دوشنبه , ۵ آبان ۱۳۹۹
خانه / فناوری / تجارت الکترونیک / کلیاتی درباره هوش تجاری

کلیاتی درباره هوش تجاری

امروزه با پیشرفت فناوری، سازمان ها به دنبال راه ها و ترفندهایی می گردند که بقایشان را در این عرصه تضمین کنند. سازمان ها می دانند که دیگر بقای آنها تنها در رسیدن به وضعیت سوددهی مداوم نیست و باید به دنبال رقابت و ابزار آن باشند. همچنین می دانند که کلید موفقیت در عصر اطلاعات، اتخاذ تصمیماتی است که بدون تناقض، بهتر و سریع تر در رقابت پیش دستی کند.
یک سازمان در طول حیاتش، داده ایجاد می کند. این داده معمولا پیرامون دارایی، بازاریابی، فروش، منابع انسانی، مدیریت ارتباط با مشتری و … گروه بندی می شوند و هر بخش یک وظیفه جدا در شرکت انجام داده و داده های مرتبط به خود را جمع آوری می کند. این حقیقت سازمان ها را ملزم به جستجوی ابزارهایی برای تسهیل فرایند کسب اثربخش داده ها، پردازش و تحلیل وسیع آنها کرده است تا براساس آن پایه ای را برای کشف دانش جدید بنا نهند.
برای سالیان متوالی از سیستم های اطلاعات مدیریت موجود مانند:MIS,DSS,ES,EIS  استفاده می شد اما این سیستم ها قادر به ایجاد یکپارچگی میان داده های پراکنده و ناهمگن و شناسایی مناسب وابستگی های موجود میان داده های جدید نبودند. برای اینکه سازمان ها قادر به واکنش سریع در برابر تغییرات بازار باشند، نیاز به سیستم های اطلاعات مدیریتی دارند که بتوانند از سازمان و محیط آن تحلیل های علت و معلولی مختلف انجام دهند.
بنابراین سازمان ها برای حفظ بقا همزمان با پیشرفت فناوری، باید تسلط بر فناوری های جدیدی مانند هوش تجاری را در کسب وکارها یک الزام و ضرورتی اجتناب ناپذیر تلقی کنند. سیستم های هوش تجاری ابزاری را فراهم می کنند که بر اساس آن نیازهای اطلاعاتی سازمان به شکل مناسبی پاسخ داده شود.

تعریف هوش تجاری


تعاریف زیادی برای هوش تجاری وجود دارد، اما به طور کلی هوش تجاری به عنوان یک رویکرد جدید در معماری سازمانی مطرح شده است که این معماری بر اساس سرعت در تحلیل اطلاعات به مدیران جهت اتخاذ تصمیمات دقیق و هوشمند کسب و کار در حداقل زمان ممکن کمک می کند. هوش تجاری یک چارچوب کاری شامل فرایندها، ابزار و فناوری های مختلف است که برای تبدیل داده به اطلاعات و اطلاعات به دانش مورد نیاز هستند، که با استفاده از همین دانش مدیران قادر به تصمیم گیری بهتر می شوند و در نتیجه عملکرد سازمان خود را بهبود می بخشند.
با پیاده سازی راهکارهای هوش تجاری فاصله موجود بین مدیران میانی و مدیران ارشد از دیدگاه ارتباط اطلاعاتی از میان خواهد رفت و اطلاعات مورد نیاز مدیران در هر سطح، در لحظه و با کیفیت بالا در اختیار آنها قرار خواهد گرفت. همچنین کارشناسان و تحلیل گران می توانند با استفاده از امکانات ساده، فعالیتهای خود را بهبود بخشند و به نتایج بهتری دست پیدا نمایند.
احساس نیاز به وجود یک سیستم هوش تجاری در سازمان برای اولین بار در سطوح بالای مدیریتی احساس می شود و از بالای هرم ساختار سازمانی به بخش های زیرین منتقل می گردد. مهم ترین نیاز یک مدیر، تصمیم گیری است. فرآیند تصمیم گیری می تواند به سه بخش کلی تقسیم شود که عبارتند از:
۱) دسترسی، جمع آوری و پالایش داده ها و اطلاعات مورد نیاز.
۲) پردازش، تحلیل و نتیجه گیری براساس دانش.
۳) اعمال نتیجه و نظارت بر پیامد های اجرای آن.

در هر یک از موارد فوق، سازمان های قدیمی که از هوش تجاری استفاده نمی کنند، دارای مشکلاتی هستند که اغلب به دلیل حجیم بودن داده ها، پیچیدگی تحلیل ها و ناتوانی در ردگیری پیامدهای تصمیم گرفته شده، به وجود می آیند. هوش تجاری با کمک به حل مشکلات فوق، به دلیل ساختاری که در سازمان به وجود می آورد، خالق فرصت های جدیدی برای سازمان است.

مراحل هوش تجاری


اگر مراحل هوش تجاری را به صورت شکل زیر در نظر بگیریم، منابع داده در مرحله اول جمع آوری می شوند. این منابع می تواند داده های انواع پایگاه داده یا اطلاعات نرم افزارهای موجود را در بر بگیرد.
اطلاعات جمع آوری شده طی فرایند  ETLدر پایگاه داده تحلیلی یا همان انبار داده(Data Warehouse) بارگذاری می شود.
داده در پایگاه داده تحلیلی در بخش های مجزایی به نام داده گاه (Data Mart) قرار می گیرد.
در مرحله بعد هوش تجاری وارد عمل شده و روی اطلاعات طبقه بندی شده تجزیه و تحلیل انجام می دهد.
در نهایت اطلاعات جهت انتشار به ابزارهای سطح بالا تحویل داده می شود.
هوش تجاری

تکنیک های مورد استفاده در هوش تجاری


در عصری که زمان، کلید اصلی در تجارت است، شرکت ها به استفاده از ابزارهای اطلاعاتی روی آورده اند تا بتوانند اطلاعات مورد نظر را به سرعت از منابع استخراج کنند. هوش تجاری در امر تصمیم گیری در سطوح مختلف سازمان به ویژه سطوح مدیران ارشد با تحلیل اطلاعات و روش های پرس و جو تسهیلات زیادی را فراهم می کند که متداول ترین این روش ها به قرار زیر است:
▪ On-Line Analytical Processing (OLAP)
▪ On-Line Transaction Processing (OLTP)
▪ Data Warehousing (DW)
▪ Data Mining (DM)
▪ Intelligent Decision Support System (IDSS)
▪ Intelligent Agent (IA)
▪ Knowledge Management System (KMS)
▪ Supply Chain Management (SCM)
▪ Customer Relationship Management (CRM)
▪ Enterprise Resource Planning (ERP)
▪ Enterprise Information Management (EIM)

لازم به ذکر است، صرف وجود تمام این تکنیک ها در سطح سازمان بدون در نظر داشتن فرهنگ سازمان و رویکرد سیستمی موجود بین کارکنان نمی‌تواند اثبات کننده هوشمندی کسب و کار آن سازمان باشد.

نتیجه گیری
با توجه به رشد روزافزون سیستم‌های نرم‌افزاری و استفاده از برنامه‌های گوناگون در سازمان‌ها و شرکت‌ها، نیاز به یکپارچگی بین سیستم‌ها کاملا بدیهی است. در این راستا سیستم‌های هوش تجاری که بین نرم‌افزارهای موجود ارتباط برقرارکرده و داده‌های ذخیره‌شده در آنها را تحلیل می‌کنند، در حال گسترش است. این سیستم‌ها با دسترسی به اطلاعات موجود در منابع داده به یکپارچگی لازم بین نرم‌افزارها دست پیدا می‌کنند.
در حال حاضر مدیران سازمان‌ها برای انجام کارهای روزانه نیاز به بررسی نرم‌افزارهای مختلف دارند، در صورتی که اگر از سیستم‌های هوش تجاری استفاده شود تنها با یک کارتابل مشترک می‌توان به نرم‌افزارهای مختلف دسترسی داشت. در صورت استفاده از سیستم هوش تجاری در سازمان‌ها و شرکت‌ها تمام کارهای روزانه کارمندان در پرتال انجام می‌شود و نیازی به بررسی جداگانه صندوق ورودی، نرم‌افزارهای مختلف، کار با فایل‌های مجزا و… نیست، با استفاده از این سیستم‌ها تمام نیاز کاربران در پرتال برآورده می‌شود.
در صورتی که تا چند سال آینده بتوانیم از این سیستم در سازمان‌ها استفاده کنیم، گام بزرگی در بهبود عملکرد سازمان‌ها برداشته‌ایم.

 


منابع
۱ – مقاله رویکردی به ساخت و پیاده سازی سیستم هوش تجاری – ماهنامه تدبیر – شماره ۲۰۱
۲ – مقاله هوش تجاری و تصمیمات کلان سازمانی – ماهنامه تدبیر – شماره ۱۹۰
۳ – پروژه کارشناسی هوش تجاری و زوایای مختلف آن – مریم حاجی جعفری – سال ۱۳۸۸
۴ – www.accbank.ir
5 – www.aravco.ir
6 – www.bisolution.ir

نویسنده مقاله: سونا جلالوندی

توصیه شده توسط به‌آموز

همچنین ببینید

۹ نفر از ثروتمندترین و جوان‌ترین مبتکران در دنیای فناوری

  نمونه‌ی بارز یک فرد موفق و جوان کسی نیست جز مارک زاکربرگ ۳۱ ساله …

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *